
Low Latency C&C and Video Streaming

with the Nvidia Jetson Nano

Introduction

This document is a basic tutorial for how to get started with the Doodle Labs Mesh Rider

Radio and the Nvidia Jetson Nano in a video streaming application. Additionally, we

demonstrate how the Mesh Rider Radio con be con�gured to optimize a Command and

Control while streaming video at the same time. The Nvidia Jetson Nano is a popular

System-on-Module (SOM) used for emerging IoT applications such as drones, robots, and

generally devices which can make use of its powerful AI capabilities. It includes a GPU

which can perform fast H.264/H.265 video encoding and decoding making it ideal for low

latency video streaming. This tutorial is divided into the following sections:

1. Video System Block Diagram

2. Hardware Setup

3. First Time Jetson Nano Setup

4. Mesh Rider Radio Con�guration

5. Preparing GStreamer

6. Video streaming and Command and Control

7. Advanced Video Streaming

This tutorial makes use of the gstreamer command-line tools, gst-launch-1.0 and gst-

inspect-1.0 . Building a C-application is beyond the scope of the tutorial.

The latency added by the Mesh Rider Radio network is less than 10ms for both

concurrent HD video and the C&C data.

Video System Block Diagram

Fig. 1 Video Data Flow

The block diagram above illustrates the data �ow path of a simple streaming application.

The cloud of Mesh Rider Radios represents a mesh situation where the video feed may

hop across a node before arriving at the destination Mesh Rider Radio. For a discussion of

the di�erent blocks , please see the document, "Mesh Rider Radio Video Streaming

Tutorial".

Hardware Setup

This tutorial makes use of the Nvidia Jetson Nano Developer Kit which has standard

interfaces like USB, HDMI etc. Basic hardware setup for streaming is shown below.

Fig. 2 Basic Hardware Setup

Power

The Jetson Nano can be powered over the standard USB Micro device port (J28) or the

barrel connector (J25). Use a 5-V supply with at least a 2-A current rating. The camera is

powered over the MIPI CSI2 or USB interface. Follow the datasheet of your particular Mesh

Rider Radio model when choosing a power supply.

Camera Setup

You may use the MIPI CSI2 interface, or a USB interface. USB 2.0 has a maximum link

speed of 480 Mbps which is unsuitable for raw 1080p30 video, which means that you will

either need a USB 3 interface, or you will need to transcode from MJPEG to H.264.

Transcoding MJPEG to H264 adds about 100ms to the latency in our tests. The MIPI CSI2

interface is only suitable for short connections, and ideally it should be shielded against

EMI. Note that the HDMI port on Nano is an output port, so you cannot connect an HDMI

camera to it. A global shutter is preferred since a rolling shutter produces a wavy e�ect

when the UAV is moving. Additionally, some cameras have some form of image

stabilization (optical or electronic), which is useful on UAVs.

We tested the control loop using the Nvidia Jetson Nano with two di�erent cameras [1][2].

1. Raspberry Pi HQ Camera (imx477)

2. E-Con Systems See3CAM_CU135 - 4k USB3.0 Camera (AR1335)

Mesh Rider Radio Setup

In Fig. 2, we are using the OEM Mini form-factor of the Mesh Rider Radio on the UAV side,

and the Wearable form-factor on the GCS side. Refer to their respective integration guides

for details on the connections. Regardless of the form-factor, all Mesh Rider Radios include

an Ethernet interface which can be connected to the Jetson Nano on the UAV.

First Time Jetson Nano Setup

The �rst time you use the Jetson Nano, you may �nd it easier to get it setup using a

monitor and keyboard. Hook up your monitor to the HDMI port, and keyboard/mouse to

the USB ports.

Getting the Firmware

There are extensive guides available on the Nvidia website which detail how to prepare

your Jetson Nano. The basic steps are:

1. Download and extract the latest �rmware image. In this tutorial, we used JP 4.4.

2. Format your SD card and burn the �rmware image to the SD card using a program

such as Balena Etcher.

3. Inset the SD card into the Jetson Nano, and power up.

The �rst time you boot up the Jetson Nano, you will be asked to setup a username and

password, and these will be required for SSH or Serial access later. By default, the Jetson

Nano is setup as a DHCP client. Therefore, you can connect it to your o�ce router so that

it can get an IP address and access the internet. Once you have connected to the internet,

run

This will make sure that your package lists and packages are up to date. After that make

sure that your Jetson clock is synchronized. This is necessary to access secure websites.

After the initial setup is complete, connect the Jetson Nano to the Mesh Rider Radio as

shown in the hardware diagram.

Mesh Rider Radio Con�guration

In this section, we describe simple steps to setup the Mesh Rider Radio for video

streaming. If you are not sure how to make any of these con�guration settings, then

please consult the Mesh Rider Radio Con�guration Guide.

IP Con�guration

The main requirement for the IP con�guration is that all nodes in the network are on the

same subnet and can therefore reach one another directly. You may choose to enable a

DHCP server on the network, or just use static IP addresses. The Jetson Nano is pre-

con�gured as a DHCP client. However, by default, the Mesh Rider Radio does not have the

DHCP server enabled.

Enabling a DHCP Server

1. In the GUI, navigate to Network -> Interfaces and EDIT the WAN interface.

2. Change the protocol from DHCP Client to Static Address and click Switch Protcol

3. We need to choose an IP address and Netmask for this node. In the screenshot below,

we used 192.168.100.1 as the static IP address and 255.255.255.0 as the netmask.

$ sudo apt update

$ sudo apt upgrade

$ timedatectl

 Local time: Tue 2020-05-05 16:23:05 +08

 Universal time: Tue 2020-05-05 08:23:05 UTC

 RTC time: Tue 2020-05-05 08:23:06

 Time zone: Asia/Singapore (+08, +0800)

 System clock synchronized: yes

systemd-timesyncd.service active: yes

 RTC in local TZ: no

4. Scroll to the bottom and under the DHCP Server section , deselect ignore interface .

The default settings are ok, so just click Save & Apply . At this point you should make

sure all nodes on the network are setup as DHCP clients. This is true by default for the

Mesh Rider Radio which are DHCP clients, but also have a �xed IP address.

Fig. 3 DHCP Con�guration

All nodes in the network should now have an IP address in the 192.168.100.0/24 subnet.

You can �nd the IP addresses of all nodes on the network by logging into the Mesh Rider

Radio over SSH and using the address resolution protocol. You can identify connected

devices by their hardware address.

root@smartradio-301a4ebb02:~# arp

IP address HW type Flags HW address Mask Device

192.168.100.210 0x1 0x2 b0:25:aa:2d:d3:8e * br-wan

192.168.100.185 0x1 0x2 00:30:1a:4e:aa:01 * br-wan

192.168.100.193 0x1 0x2 00:30:1a:4e:aa:09 * br-wan

Note that the above steps apply for both WDS AP/Client and Mesh modes.

Tra�c Prioritization

Figure 4 shows the con�guration menu for Di�erentiated Services. This page can be found

by navigating to network -> Traffic Prioritization in the web GUI. Tra�c optimization

works by �ltering packets based on their network port, IP address or transport layer

protocol and placing them in one of four di�erent queues - best e�ort, command/control

and voice, video, and background. Doodle Labs Mesh Rider Radios include additional

optimizations for video and command/control data which can be enabled by checking the

relevant radio buttons in the Tra�c Prioritization con�guration menu.

The video bad link threshold is an additional failsafe where the video stream is guaranteed

to be dropped if the signal strength is lower than the de�ned threshold. The default

numbers make it disabled.

You may also enable Diversity Rates Only which limits the radio’s modulation rate to

slower but more robust rates. This is recommended for highly dynamically changing

channel conditions or UAV movement.

Lastly, make sure to create a rule for your RC/telemetry connection like the ones already

de�ned. By default, port 14550 (MAVLink) is sent to the command and control queue. You

do not need to create a rule for your video stream. After making your changes, click Save

& Apply .

Fig. 4 Di�erentiated Services Con�guration Menu

Preparing GStreamer

GStreamer is a framework for creating multimedia streaming applications and is available

in multiple platforms including Windows, iOS, Android, and Linux [3]. GStreamer is

installed in the Jetson Nano by default and you can write simple pipelines to steam video

without any additional setup. This guide focuses on using RTSP streaming, which is

commonly used for real-time streaming applications. In order to stream using RTSP, you

either need to write your own application, or use gst-rtsp-server [4]. gst-rtsp-server

requires the gtk-doc-tools package to be installed.

In order to use gst-rtsp-server, you need to clone the repository, checkout the version of

gst-rtsp-server suitable for your GStreamer version, and the build the application. Start

by creating a working directory.

The version of GStreamer we have is 1.14.5, so checkout the corresponding git branch.

gst-rtsp-server is now ready to be used.

Video Streaming and Command and Control

Before starting a video stream, �rst get the information on your video camera’s

capabilities. You can list the cameras attached to the Jetson Nano and check their

capabilities using v4l2-ctl .

$ sudo apt install gtk-doc-tools

$ mkdir workingDir

$ cd workingDir

$ git clone https://github.com/GStreamer/gst-rtsp-server.git

$ cd gst-rtsp-server

$ gst-launch-1.0 --version

GStreamer 1.14.5

https://launchpad.net/distros/ubuntu/+source/gstreamer1.0

$ git checkout 1.14.5

$./autogen.sh

$./configure.sh

$ make

$ sudo make install

$ v4l2-ctl --list-devices

vi-output, imx219 6-0010 (platform:54080000.vi:0):

 /dev/video0

$ v4l2-ctl -d /dev/video0 --list-formats-ext

ioctl: VIDIOC_ENUM_FMT

 Index : 0

 Type : Video Capture

 Pixel Format: 'RG10'

In our case, we have one camera which is attached and it is exposed to the user as

/dev/video0 . Our tests will be conducted using 1920x1080 at 30 fps. Fast encoding at

H.264 can be accomplished using the omxh264enc plugin. You can see details and options

of the omxh264enc plugin using

The output is very long and is not shown. The equivalent H.265 encoder plugin is

omxh265enc . Nvidia has an Accelerated GStreamer User Guide available online which

details some of the capabilities of the Jetson Nano when used with GStreamer.

RTP Streaming

Before diving into RTSP streaming, we can test a simple RTP video stream. In this case, the

Nvidia Jetson Nano will act as the client, and it will directly stream video packets to a

known listening server.

The RTP client can be started on the Jetson Nano using

where <IP Address> is the IP address of the receiving PC. The video feed can be picked up

on the receiving PC with

All instances of h264 above also work with h265.

 Name : 10-bit Bayer RGRG/GBGB

 Size: Discrete 3264x2464

 Interval: Discrete 0.048s (21.000 fps)

 Size: Discrete 3264x1848

 Interval: Discrete 0.036s (28.000 fps)

 Size: Discrete 1920x1080

 Interval: Discrete 0.033s (30.000 fps)

 Size: Discrete 1280x720

 Interval: Discrete 0.017s (60.000 fps)

 Size: Discrete 1280x720

 Interval: Discrete 0.017s (60.000 fps)

$ gst-inspect-1.0 omxh264enc

$ gst-launch-1.0 nvarguscamerasrc ! "video/x-

raw(memory:NVMM)",width=1920,height=1080,framerate=30/1,format=NV12 !

videoconvert ! omxh264enc control-rate=constant bitrate=5000000

iframeinterval=15 ! h264parse ! rtph264pay name=pay0 pt=96 config-interval=-1

! udpsink host=<IP ADDRESS> port=5000 sync=false

$ gst-launch-1.0 -v udpsrc port=5000 caps='application/x-rtp, media=

(string)video, clock-rate=(int)90000, encoding-name=(string)H264, framerate=

(fraction)30/1, width=(string) 1920, height=(string) 1080, playload=(int)96' !

rtpjitterbuffer latency=100 ! rtph264depay ! avdec_h264 ! videoconvert !

autovideosink sync=false

RTSP Streaming

RTSP streaming can be started using

Note that the command points to the gst-rtsp-server directory which was cloned

earlier. The stream can be picked up on the receiving PC using

where <IP Address> is the IP address of the Jetson Nano. All instances of h264 above also

work with h265. In the command above we use UDP as the transport protocol. To use TCP,

the location=rtsp:// part should be changed to location=rtspt:// .

QGroundcontrol

Important Note: It is not possible to change the RTSP client settings in

QGroundControl, and we have found that many of the default settings are not

suitable for real-time video streaming. If you are using QGroundControl and are

experiencing video issues, then we recommend avoiding RTSP, and using the simple

RTP streaming discussed in the section above.

The RTSP stream can be picked up using QGroundcontrol with either H.264 or H.265

encoding. Figure 5 shows the relevant settings, and Fig. 6 shows a screenshot of the video

feed with 2Mbps H.265 encoding. Note that QGroundcontrol does not support RTSP over

TCP by default.

$./gst-rtsp-server/examples/test-launch "nvarguscamerasrc ! video/x-

raw(memory:NVMM) width=1920 height=1080 framerate=30/1 format=NV12 !

omxh264enc control-rate=constant bitrate=5000000 iframeinterval=15! h264parse

! rtph264pay name=pay0 pt=96 config-interval=-1"

$ gst-launch-1.0 -v rtspsrc buffer-mode=0 do-retransmissions=0 drop-on-

latency=1 latency=100 location=rtsp://<IP Address>:8554/test ! application/x-

rtp, payload=96 ! rtph264depay ! avdec_h264 ! videoconvert ! autovideosink

sync=false

Fig. 5 QGroundcontrol RTSP settings

Fig 6 RTSP Stream in QGC 2Mbps H.265 Encoding

Results

With the above settings, we measured the glass-to-glass latency while running hping3 at

the same time. hping3 is a Linux command-line utility which can be used to measure UDP

latency (among other things). You can install and run hping3 by running

$ sudo apt install hping3

$ sudo hping3 --data 500 --destport 14550 10.223.0.2

HPING 10.223.0.2 (enp4s0 10.223.0.1): NO FLAGS are set, 40 headers + 500 data

bytes

With the above settings, the glass-to-glass latency was typically 110ms with only about

10ms for the transport through the Mesh Rider Radios. The di�erence between TCP and

UDP was around 3 ms. Figure 7 shows the results.

Note that Doodle Labs Mesh Rider uses special radio and parameters to optimize the

video transmission over wireless medium in high interference areas. For video

transmission within Mesh Rider Radio private network, we recommend use of TCP. We

can see that the latency added by the Mesh Rider Radio network amounted to less

than around 10ms.

Fig. 7 Glass to glass latency

Advanced Video Streaming

In this section, we will cover some advanced video streaming protocols which can improve

video performance in various adverse conditions. We present some example gstreamer

pipelines as-is, but bear in mind that many of these may not be integrated into

applications such as QGroundControl.

Pipeline Con�guration

The RTSP pipelines which we used above can be tailored for di�erent applications. Some

of the settings which are useful to con�gure in highly dynamic applications (UAVs) are

discussed below.

len=40 ip=10.223.0.2 ttl=64 DF id=43729 sport=14550 flags=RA seq=0 win=0

rtt=3.8 ms

1. Encoder Bitrate - The encoder bitrate controls the bandwidth used to send the video.

Any wireless link has a limited network capacity, and if the bitrate exceeds this

capacity, frames will be dropped.

2. Encoder i-frame interface - The i-frame interval determines how often key interval

frames are sent. In H264/H265 encoding, image frames are compressed in image-

space and time. I-frames, however, are not compressed in time. In contrast to i-

frames, p-frames and b-frames require information from previous and future frames

to be decoded, so if an i-frame is dropped, all subsequent frames until the next i-

frame could be a�ected.

a. We recommend keeping a very low i-frame interval for highly dynamic channel

conditions. This will result in a general degradation in picture quality, but fewer

frame drops.

3. Intra-refresh type - Some encoders allow you to divide i-frames into multiple sub-

frames. Rather than encoding the entire i-frame at once, the frame is split into

di�erent regions, and the i-frame of each region is encoded at cyclically. Since i-frames

are signi�cantly larger than p/b-frames, this has the e�ect of making the bit-stream

more stable which is easier on the radio link.

4. Region-of-interest - Some encoders allow you too choose a region-of-interest within

the frame. Usually is is a rectangle in the center of the frame, and it will be encoded at

a higher resolution than the rest of the frame.

Forward-Error-Correction

Forward-Error-Correction (FEC) is an encoding method whereby data is sent redundantly

so that missing or erroneous data can be recovered at the receiver. FEC is already used at

the bit level by the radio, but it can be added at either the transport or application level.

Gstreamer integrates the FEC encoder/decoder elements gstfeculpenc and

gstfeculpdec [5][6].

An example RTP sending pipeline using the raspberry pi is

An example RTP receiving pipeline is

gst-launch-1.0 --gst-debug-level=3 rpicamsrc bitrate=2000000 exposure-

mode=sports awb-mode=1 keyframe-interval=15 rotation=180 preview=false sensor-

mode=5 ! video/x-h264,width1280,height=720,framerate=30/1 ! h264parse !

rtph264pay config-interval=-1 name=pay0 pt=96 ! rtpulpfecenc percentage=100

pt=122 ! udpsink host=10.223.0.1 port=5000

gst-launch-1.0 -v udpsrc port=5000 caps='application/x-rtp, media=

(string)video, clock-rate=(int)90000, encoding-name=(string)H264, framerate=

(fraction)30/1, width=(string)1920, height=(string)1080, playload=(int)96' !

rtpulpfecdec pt=122 ! rtph264depay ! avdec_h264 ! videoconvert ! autovideosink

sync=false

MTU Sizing

The Maximum Transmission Unit (MTU) is the largest data packet that the network will

support. Reducing the MTU size used by the video streaming application will result in

smaller over-the-air packets. A smaller packet is in the air for a shorter duration and

therefore is less likely to be corrupted. However, the MTU size also directly a�ects the

network capacity. As each packet in a unicast transmission needs to be acknowledged, it is

less e�cient to send smaller packets and then wait for an acknowledgement.

In GStreamer, you can con�gure the MTU in an RTSP stream using the rtph264pay

element. An example con�guration would be

Adaptive Bitrates

The network capacity is the throughput that the network can support at any particular

time. In a UAV scenario, the network capacity can change throughout the mission. The

most obvious case is where the UAV is �ying away from the GCS, which results in a steady

drop in the network capacity over time. Using dynamically adaptive bitrates to modify the

video encoder’s bitrate based on the network capacity can result in a stable video feed

even in harsh RF environments or at long range.

References

1. Raspberry Pi HQ Camera, https://www.raspberrypi.com/products/raspberry-pi-high-

quality-camera/, 18-8-2022

2. E-Con Systems 4K USB Camera, https://www.e-consystems.com/4k-usb-camera.asp,

18-8-2022

3. Gstreamer, https://gstreamer.freedesktop.org/, 18-8-2022

4. gst-rtsp-server, https://github.com/GStreamer/gst-rtsp-server, 18-8-2022

5. Gstreamer gstulpfecenc,

https://gstreamer.freedesktop.org/documentation/rtp/rtpulpfecenc.html?gi-

language=c, 26-7-2022

6. Gstreeamer gstulpfecdec,

https://gstreamer.freedesktop.org/documentation/rtp/rtpulpfecdec.html?gi-

language=c, 26-7-2022

rtph264pay config-interval=-1 name=pay0 pt=96 mtu=250

https://www.raspberrypi.com/products/raspberry-pi-high-quality-camera/
https://www.e-consystems.com/4k-usb-camera.asp
https://gstreamer.freedesktop.org/
https://github.com/GStreamer/gst-rtsp-server
https://gstreamer.freedesktop.org/documentation/rtp/rtpulpfecenc.html?gi-language=c
https://gstreamer.freedesktop.org/documentation/rtp/rtpulpfecdec.html?gi-language=c

