
Large Network Optimization

Introduction

In this document, we will discuss how to optimize the Mesh Rider radio settings for large

local-area networks (LAN). The goal is to reduce the amount of background tra�c to a

bare minimum to keep the network running and thereby maximize the network capacity

for the application payload.

Network Modes

Mesh Rider radios support three basic network topologies.

1. Mesh

a. This is the default network mode that the radios are shipped in. See Figure 1.

b. Every node is associated with every other node, and tra�c can go from every

node to every other node either directly of across multiple hops.

Fig. 1 Mesh Network

2. WDS AP/Client

a. This is a star network as shown in Figure 2.

b. All tra�c goes through the AP, and clients only associate with the AP.

Fig. 2 Star Network

3. Dynamic Mesh

a. This is a licensed feature which can support signi�cantly larger mesh networks

with zero handover latency.

b. Talk to your sales representative for more information.

This document discusses optimizations for Mesh and WDS AP/Client (Star) networks. Note

that star networks inherently support more nodes than mesh networks because of the

smaller amount of background tra�c and reduced number of peer-to-peer associations.

System Con�guration and Optimization

Network Capacity in a Nutshell

Wireless transceivers are broadcast by nature. Any receiver inside of a transmitter's

antenna beam will receive the transmitter's message either as recognizable data, or noise

(if it cannot understand the message). In general, radio's inside of each other's coverage

area need to share the total network capacity. The network capacity is measured in bits-

per-second, and is in�uenced by

background noise including interference

received power

signal distortion

Background noise a�ects a receiver's ability to decode the desired message. This is

analogous to listening to someone talking while there is noise in the background. In Fig. 3,

Radio3 cannot talk to Radio4 while Radio1 is talking to Radio2. Mesh Rider radios use a

listen-before-talk (LBT) algorithm to avoid self-interference within the network, and in

doing so, the radios share the total network capacity e�ciently.

Fig. 3 Noise illustration

The recevied power is determined by factors such as the transmitted power, the antenna

gain, the distance over which the signal travels, signal blockage, and contructive or

destructive interference. Sometimes the overall received signal strength is good, but

propagation characteristics such as small-scale fading, doppler shift, or intersymbol

interference may distort the signal, reducing it's e�ective signal-to-noise ratio (SNR).

RF signal propagation is a complex topic, and we won't go into detail, but su�ce it to say

that any area of deployment supports a certain network capacity that varies over time.

Networking radios usually exchange background messages which are used to maintain

and optimize the network. The following sections describe how we can minimize this

background tra�c.

Broadcasting Behavior and Recommendations

The Mesh Rider radio handles broadcast packets in di�erent ways for Star (AP/Client) and

Mesh networks.

For Star networks (AP/Client), a client that wants to broadcast a packet will �rst unicast

the packet to the AP. The AP will then broadcast the packet at the lowest basic rate (6-

Mbps by default) to all clients. Broadcast packets are sent only once, and there is no

guarantee that they will reach their destination.

For Mesh networks, each node that wants to broadcast a packet will broadcast it three

times (for redundancy). As Mesh networks can be extended over multiple hops, any

radio that receives a Mesh broadcast will re-broadcast the same packet three times

unless it has already broadcast that packet.

Fig. 4 Mesh broadcasting illustration

Mesh Rider radios can be con�gured to reduce the amount of broadcasting in Mesh

mode. However, if broadcasting is used in your appication, you should make sure you

understand the way protocol works before making any con�guration changes.

Optimizations

The optimizations below are made based on the October 2022 Service release.

Disable the Mesh Map

The Mesh Map is a visualization tool in the GUI which aids users in understanding how

tra�c is routed in a mesh network. Each node needs to broadcast Mesh information in

order for it to work, but it doesn't have any e�ect on the actual Mesh routing. Therefore it

can be safely disabled.

Disable Multicast Optimizations

If your application does not use multicasting, then we recommend disabling multicast

optimizations. The default behavior of the Mesh Rider radio is to discover multicast clients,

and convert multicast tra�c into unicast tra�c while it traverses the Mesh. Although

small, it does rely on message exchange to work. If your application does use multicasting,

then it is usually better to leave the optimizations enabled.

uci set meshmap.main.enabled='0'

uci set alfred.alfred.disabled='1'

uci commit

/etc/init.d/meshmap restart

/etc/init.d/alfred restart

Disable DHCP (optional)

If your application does not use DHCP, then disable DHCP client probes.

Increase OGM interval (Mesh mode only)

Increase the Mesh beaconing interval as much as your application allows (don't go higher

than 10000ms). Every node broadcasts a beacon at a regular interval, and that broadcast

is re-broadcast by every other node in the mesh. Therefore, mesh beacons grow with the

square of the number of mesh nodes.

Disable TPC

Transmit Power Control works on a peer-to-peer basis, and therefore it should be

disabled. This will mean that the nodes need to be separated by a few meters to minimize

packet loss. This can also be reset with /etc/init.d/network restart .

Disable pinging on ath9k_watchdog

The ath9k_watchdog is a utility which constantly monitors the link between radios in the

network, and takes action if any abnormalities are detected. A legacy feature of the

watchdog is that it regularly pings nearby neighbors. This behavior is generally

unnecessary in the latest driver, and it can be safely disabled.

uci set network.wan.multicast_querier='0'

uci set network.bat0.multicast_mode='0'

uci commit

/etc/init.d/network restart

uci set network.wan.proto='none'

uci commit

/etc/init.d/network restart

uci set network.bat0.orig_interval=5000

uci commit

/etc/init.d/network restart

uci set

wireless.radio$(/usr/share/simpleconfig/get_fes_phy.sh).dynamic_txpower=0

uci commit

wifi

uci -c "/usr/share/.doodlelabs/config/" set

ath9k_watchdog.unicast_ping.disabled='1'

uci -c "/usr/share/.doodlelabs/config/" set

ath9k_watchdog.broadcast_ping.disabled='1'

uci commit

/etc/init.d/ath9k_watchdog restart

In our next planned �rmware release, these changes will be applied by default, and the -c

"/usr/share/.doodlelabs/config/" switch will be removed.

Change the default channel bandwidth to 20-MHz

Having a wider channel bandwidth makes packet duration shorter and frees up airtime for

the user's payload. In the 2.4-GHz band, it may be better to use 15-MHz to avoid Wi-Fi

compatibility. This can also be reset with /etc/init.d/network restart .

Adjust broadcasting behavior (Mesh mode only)

Reduce the Mesh broadcasting and re-broadcasting to the minimum. Note that

bcasts_other controls the number of times a broadcast received from another radio is re-

broadcast while bcasts_own controls the number of times a broadcast originating

internally is transmitted. As Mesh nodes cannot always see one another, bcasts_other

should be kept to a minimum of 1 if you need broadcasts to traverse the entire mesh.

Mesh Limit and Discussion

Using the settings above, the radios can support around 30 nodes in a single localized

mesh network where all nodes are within each other's coverage area. The mesh will

support around 10 to 20 Mbps of payload, but results will vary depending on network

conditions. If the mesh is spread out such that not all nodes can see each other, then a

few things happen.

You can visualize the network as if it is segregated into clusters where di�erent

clusters are optionally bridged by one or more radios.

When this happens, it is possible for more than one radio to transmit at the same time

as long as they are not in the same cluster.

However, communications between clusters require the data packets to hop across

the bridging node which multiplies the amount of data being transmitted. In Fig. 5,

Radio1 and Radio2 can transmit at the same time as long as they are communicating

with radios within their colored zones, but if they need to communicate with a radio in

the opposite colored zone, then they will need to communicate through Radio3.

Overall, whether the total network capacity is more or less than in the single localized

mesh depends on the distribution of the mesh and the where the data needs to �ow.

uci set wireless.radio$(/usr/share/simpleconfig/get_fes_phy.sh).chanbw=20

uci commit

wifi

uci set network.mesh_dev.num_bcasts_own=1

uci set network.mesh_dev.num_bcasts_other=0

uci commit

/etc/init.d/network restart

Fig. 5 Illustration of a distributed mesh

If you need more than 30 nodes in your network, you can consider

1. Dynamic Mesh (talk to a sales representative)

2. Segregating your network into smaller Star networks

Results

To test the above con�guration changes, we created a mesh network of 16 Mesh Rider

radios in the 2.4-GHz band. The point of the experiment was to test the impact of protocol

overhead, and the signal strength between each set of radios was between -35 and -70

dBm to ensure good signal quality. We used a mixture of Wearable, Embedded, and Mini-

OEM Smart Radios in the network.

Fig. 6 Illustration of the test setup

The overall network usage can be seen by using the sysutils activity command. This

shows us that background tra�c occupied approximately 19% of the available air time.

The state of the mesh can also be found using the batctl o command. The listing below

�lters out indirect paths. The third column shows the time since any packet was received,

and it is below 5 seconds (the mesh beaconing interval) for all nodes. The fourth column

shows the transmit quality to the station in the second column out of 255. The transmit

quality is acceptable for every link.

Finally, we connected PCs to two of the radios' eth0 interfaces and ran ping and iperf

tests. The round-trip-time over the network was around 3ms, and the network supported

an additional 32 Mbps of application payload. It is important to note that in a real

application, the network capacity depends on the number of data streams, and the size of

the data packets among other things.

root@smartradio:/tmp# sysutils activity

Checking channel activity. Please wait 5 seconds...

channel activity = 18.8286 %

TX bitrate = 58.2784 kbps

RX bitrate = 69.6864 kbps

root@smartradio-301a4ebb02:/tmp# batctl o | grep "*"

* 00:30:1a:4e:bb:01 2.800s (143) 00:30:1a:4e:bb:01 [wlan0]

* 00:30:1a:4f:52:32 1.010s (141) 00:30:1a:4f:51:c2 [wlan0]

* 00:30:1a:4f:96:0e 3.450s (151) 00:30:1a:4f:96:0e [wlan0]

* 00:30:1a:4e:bb:22 4.140s (151) 00:30:1a:4e:bb:22 [wlan0]

* 00:30:1a:4e:bb:24 2.900s (154) 00:30:1a:4e:bb:24 [wlan0]

* 00:30:1a:4e:bb:29 1.040s (138) 00:30:1a:4e:bb:29 [wlan0]

* 00:30:1a:4e:bb:0a 2.660s (192) 00:30:1a:4e:bb:0a [wlan0]

* 00:30:1a:4f:9b:c7 1.130s (133) 00:30:1a:4f:9b:c7 [wlan0]

* 00:30:1a:4e:bb:06 3.980s (116) 00:30:1a:4e:bb:26 [wlan0]

* 00:30:1a:4f:51:c2 0.110s (198) 00:30:1a:4f:51:c2 [wlan0]

* 00:30:1a:4e:bb:25 3.250s (189) 00:30:1a:4e:bb:25 [wlan0]

* 00:30:1a:4e:bb:26 3.400s (198) 00:30:1a:4e:bb:26 [wlan0]

* 00:30:1a:4f:96:52 2.390s (142) 00:30:1a:4f:96:52 [wlan0]

* 00:30:1a:4e:bb:23 0.120s (137) 00:30:1a:4e:bb:25 [wlan0]

* 00:30:1a:4e:bb:09 2.980s (167) 00:30:1a:4e:bb:09 [wlan0]

PS C:\> ping 10.223.0.10

Pinging 10.223.0.10 with 32 bytes of data:

Reply from 10.223.0.10: bytes=32 time=3ms TTL=64

Reply from 10.223.0.10: bytes=32 time=3ms TTL=64

Reply from 10.223.0.10: bytes=32 time=4ms TTL=64

Reply from 10.223.0.10: bytes=32 time=3ms TTL=64

PS C:\> iperf3 -c 10.223.0.10 -t 10 -i 1 -R

-

[ID] Interval Transfer Bandwidth

Quick Summary Of Network Optimization

Important: In mesh mode, it is necessary to stagger the power on of each device with

around 10 seconds of delay to prevent all of the authentication/association packets

�ooding the network.

We will use the command line to con�gure the radios as it is signi�cantly faster when you

are con�guring a large number of nodes. To apply the same con�guration to a large

number of nodes, we strongly recommend either creating your own �rmware image, or

iperf3: interrupt - the client has terminated

PS C:\Users\Aaron> iperf3 -c 10.223.0.10 -t 10 -i 1 -R

Connecting to host 10.223.0.10, port 5201

Reverse mode, remote host 10.223.0.10 is sending

[4] local 10.223.0.90 port 53906 connected to 10.223.0.10 port 5201

[ID] Interval Transfer Bandwidth

[4] 0.00-1.01 sec 3.48 MBytes 29.0 Mbits/sec

[4] 1.01-2.00 sec 4.72 MBytes 39.8 Mbits/sec

[4] 2.00-3.00 sec 3.74 MBytes 31.4 Mbits/sec

[4] 3.00-4.00 sec 3.59 MBytes 30.1 Mbits/sec

[4] 4.00-5.01 sec 4.10 MBytes 34.0 Mbits/sec

[4] 5.01-6.00 sec 4.00 MBytes 33.9 Mbits/sec

[4] 6.00-7.00 sec 4.67 MBytes 39.2 Mbits/sec

[4] 7.00-8.00 sec 4.10 MBytes 34.3 Mbits/sec

[4] 8.00-9.00 sec 3.87 MBytes 32.5 Mbits/sec

[4] 9.00-10.00 sec 4.06 MBytes 34.0 Mbits/sec

-

[ID] Interval Transfer Bandwidth Retr

[4] 0.00-10.00 sec 40.4 MBytes 33.9 Mbits/sec 6 sender

[4] 0.00-10.00 sec 40.4 MBytes 33.9 Mbits/sec receiver

iperf Done.

PS C:\> iperf3 -c 10.223.0.10 -t 10 -i 1

Connecting to host 10.223.0.10, port 5201

[4] local 10.223.0.90 port 53908 connected to 10.223.0.10 port 5201

[ID] Interval Transfer Bandwidth

[4] 0.00-1.01 sec 4.50 MBytes 37.4 Mbits/sec

[4] 1.01-2.01 sec 4.00 MBytes 33.5 Mbits/sec

[4] 2.01-3.01 sec 3.00 MBytes 25.1 Mbits/sec

[4] 3.01-4.01 sec 4.00 MBytes 33.7 Mbits/sec

[4] 4.01-5.01 sec 3.50 MBytes 29.4 Mbits/sec

[4] 5.01-6.01 sec 4.00 MBytes 33.5 Mbits/sec

[4] 6.01-7.01 sec 3.75 MBytes 31.4 Mbits/sec

[4] 7.01-8.01 sec 3.38 MBytes 28.3 Mbits/sec

[4] 8.01-9.00 sec 4.38 MBytes 37.1 Mbits/sec

[4] 9.00-10.00 sec 3.88 MBytes 32.5 Mbits/sec

-

[ID] Interval Transfer Bandwidth

[4] 0.00-10.00 sec 38.4 MBytes 32.2 Mbits/sec sender

[4] 0.00-10.00 sec 38.2 MBytes 32.0 Mbits/sec receiver

iperf Done.

using a factory reset script for each radio. Details can be found in our Production

Firmware Customization Guide (link to be added).

The optional steps listed below have less impact on background tra�c, but you should

apply them if you don't need the features.

Disable the Mesh Map (mesh mode only)

uci set meshmap.main.enabled='0'

uci set alfred.alfred.disabled='1'

Disable multicast optimizations (optional)

uci set network.wan.multicast_querier='0'

uci set network.bat0.multicast_mode='0'

Disable sending DHCP probes (optional)

uci set network.wan.proto='none'

Increase the mesh beaconing interval to 5 seconds (mesh mode only)

uci set network.bat0.orig_interval=5000

Disable Transmit Power Control

uci set

wireless.radio$(/usr/share/simpleconfig/get_fes_phy.sh).dynamic_txpower=0

Increase the channel bandwidth to 20-MHz (use 15-MHz for 2.4-GHz radios)

uci set wireless.radio$(/usr/share/simpleconfig/get_fes_phy.sh).chanbw=20

Reduce broadcast redundancy to 1 (no redundancy), and do not re-broadcast

received broadcast packets (breaks mesh hopping for broadcast packets)

uci set network.mesh_dev.num_bcasts_own=1

uci set network.mesh_dev.num_bcasts_other=0

disable ath9k_watchdog pings

uci -c "/usr/share/.doodlelabs/config/" set

ath9k_watchdog.unicast_ping.disabled='1'

uci -c "/usr/share/.doodlelabs/config/" set

ath9k_watchdog.broadcast_ping.disabled='1'

Commit changes and restart relevant services

uci commit

/etc/init.d/ath9k_watchdog restart

/etc/init.d/meshmap restart

/etc/init.d/alfred restart

/etc/init.d/network restart

