
The Command-Line Interface

Introduction

If you login to the Mesh Rider Radio's Linux Ash shell (similar to Bash) using SSH, you can

run Linux commands. This guide discusses the following types of CLI commands

1. Common CLI Commands

2. UCI

3. UBUS

4. Central Con�guration

5. The Link Status Log

Ultimately, you may want to run some of these commands remotely over the API. This is

discussed in our Remote Management Guide.

Common CLI Commands

The Mesh Rider Radio uses the Almquist shell (Ash)

(https://en.wikipedia.org/wiki/Almquist_shell), which is similar to Bash. If you know Bash,

you will �nd the Mesh Rider Radio CLI very familiar. If not, we recommend going through

one of the many online tutorials on Bash. The tables below summarize commands you are

likely to use in the course of your Mesh Rider Radio testing.

Real-Time Con�guration

The commands below work on-the-�y, but do not survive a network restart or reboot.

Command Purpose

iw wlan0 set txpower

fixed 2000

Sets the TX power to 20 dBm. Note that the power is

measured in millibels, so divide by 100 to get decibels.

iw wlan0 set txpower

auto

Sets the TX power to auto (highest power)

iw wlan0 set bitrates

ht-mcs-2.4 <RATE>

Fixes the bitrate. is the MCS rate between 0 and 15 where

0-7 are single-stream rates, and 8-15 are dual-stream rates.

https://en.wikipedia.org/wiki/Almquist_shell

Command Purpose

iw wlan0 set bitrates Sets the MCS rate to auto

iw dev wlan0 mesh

chswitch <CHANNEL> <#

BEACONS>

Sends a channel switch announcement to all MESH nodes

to switch to after sending <# BEACONS> beacons.

hostapd_cli

chan_switch <# BEACONS>

<FREQ> ht

Sends a channel switch announcement to all WDS Client

nodes to switch to after sending <# BEACONS> beacons.

Getting Connection Information

Command Purpose

iw wlan0

station dump

OR

iw wlan0

station get

<MAC>

Gets information about all connected stations or an individual

station.

iwinfo wlan0

assoclist

Information on all associated stations

iw wlan0 info Get information about the current wireless settings

iw wlan0

survey dump

Get channel usage statistics

batctl See a list of commands for mesh interface information and

con�guration

batctl o See information about connected mesh nodes including preferred

hop (*), last-seen time, transmit quality (#/255)…

Networking Information

Command PurposeCommand Purpose

ifconfig br-wan Show information about the WAN bridge

ip a show br-wan Show information about the WAN bridge

route -n Show the routing table

netstat -tuapn Show socket connection information

arp Show the address resolution protocol table.

ip a Show information about IP addresses

fw3 print fw3 is a front end to iptables and can be used to con�gure

the �rewall.

cat

/proc/net/nf_conntrack

See exiting network connections

bmon -b

OR

bmon -b -p wlan0

Network usage information

System Information

Command Purpose

dmesg See kernel messages

cat /var/log/messages

OR

logread

See system log messages

top Check processor load

free Check memory usage

UCI

The UCI system is used for persistent con�guration. Most UCI �les are found at

/etc/config/ . This is a slow method of con�guration, but changes are saved over a

reboot. The general procedure for making a UCI con�guration change is

1. To show the existing con�guration, run

to show the full UCI con�guration or

to shows the wireless con�guration (for example).

2. Modify a con�guration and commit the change (this saves the change)

This sets the channel bandwidth to 5 MHz. You can save individual sections too. For

example uci commit wireless . After committing changes, you need to restart the

service.

3. After making con�guration changes, restart the relevant service. You can see a list of

services by running

After that, restart the service. For example,

will restart the socat service (serial interface). Note that /etc/init.d/network restart

will restart all networking related services including the wireless. If you have only

made changes to the wireless con�guration, you can just run wifi (this is an

exception as the wireless con�g �le doesn't have a corresponding init script).

UBUS

Making calls using UBUS

uci show

uci show wireless

uci set wireless.radio.chanbw=5

uci set wireless.radio0.txantenna='1'

uci commit

ls /etc/init.d

/etc/init.d/socat restart

Calls to the JSON-RPC API go through the Openwrt ubus system

(https://openwrt.org/docs/techref/ubus). Before going into the JSON-RPC API, you should

become familiar with ubus. In order to run ubus directly, �rst SSH into the radio. You can

view a list of available ubus commands using (result abridged)

Note that the central-con�g call is only available after enabling the Central Con�guration

utility. You can get information about how to use speci�c ubus calls by running

For example,

An example of how to use the iwinfo call is shown below. We replaced "String" with

"wlan0" (result abridged).

Parsing the json output

We can �lter these results using the jsonfilter utility. Note in the JSON �le above that

the results property is an array of values, one for each connected station.

root@smartradio:~# ubus list

central-config

dhcp

dnsmasq

file

iwinfo

…

root@smartradio:~# ubus -v list <CALL>

root@smartradio:~# ubus -v list iwinfo

'iwinfo' @68374f72

 "devices":{}

 "info":{"device":"String"}

 "scan":{"device":"String"}

 "assoclist":{"device":"String","mac":"String"}

 "freqlist":{"device":"String"}

 "txpowerlist":{"device":"String"}

 "countrylist":{"device":"String"}

 "survey":{"device":"String"}

 "phyname":{"section":"String"}

root@smartradio~# ubus call iwinfo assoclist '{"device":"wlan0"}'

{

 "results": [

 {

 "mac": "00:30:1A:4E:BB:09",

 "signal": -47,

…

root@smartradio:~# ubus call iwinfo assoclist '{"device":"wlan0"}' |

jsonfilter -e '@.results[1].mac' -e '@.results[1].signal'

https://openwrt.org/docs/techref/ubus

Or if you know the MAC address of the device you want to �lter, you can use

In general, however, we recommend parsing data on your local machine where it should

be easier.

Sense

Sense is the name of our upgraded Central Con�guration, Automatic

Band/Channel/Bandwidth selection, and Link Recovery utility. Sense was introduced in the

July 2023 Beta Resilience Release and heavily updated in the Sept 2023 Sense release.

Sense is discussed in more detail here.

Noise scanning over the CLI

The �rmware integrates a manual band scanning utility which allows the user to scan

speci�c band/channel/bandwidths for noise. You can modify the list of scanned

frequencies by editing the �le /etc/scanlist.json . The default is shown below. A

limitation of this utility is that the second frequency to be scanned in each submodel must

be more than 5-MHz higher than the �rst (they also must be valid channels). Therefore,

you will not be able to scan frequencies 2412 MHz and 2417 MHz in the RM-2450-2L-X

submodel. In general, you should scan non-overlapping channels with a wide bandwidth,

but scanning the 2.4-GHz band with a 20-MHz bandwidth could lead to incorrect results

due to the presence of third-party Wi-Fi devices.

To run a scan, execute the command switch-scan-new.sh . The results will be in a table

format at /tmp/scan_results

00:30:1A:4E:BB:01

-62

root@smartradio:~# ubus call iwinfo assoclist '{"device":"wlan0"}' |

jsonfilter -e '@.results[@.mac="00:30:1A:4E:BB:01"].signal'

-62

$ cat /etc/scanlist.json

{"scanlist":[

 {"model":"RM-1675-2L-X","bandwidth":"10000","freq":

["1650","1670","1690"]},

 {"model":"RM-2245-2L-X","bandwidth":"10000","freq":

["2220","2250","2280"]},

 {"model":"RM-2450-2L-X","bandwidth":"10000","freq":

["2412","2432","2452"]}

]}

$ cat /tmp/scan_results

FREQ noise-AVG noise-75% noise-90% noise-MAX num-scans

file:///C:/Users/User/Documents/DL-Techlib/site/sw-guides/sense/

FREQ : The frequency being scanned

noise-AVG : The average noise level over all OFDM sub-carriers

noise-75% : The noise level which 75% of the OFDM sub-carriers is below

noise-90% : The noise level which 75% of the OFDM sub-carriers is below

noise-MAX : The maximum noise level of any sub-carrier

num-scans : The number of scans performed at this frequency

Typically, the noise-75% column is a good reference as the radio uses forward-error

correction (FEC) to correct for some percentage of the bit errors. You can sort the table

using awk . For example, to sort the table by the noise-75% level, run

As a scan at a single frequency is very brief, it will not capture intermittent sources of

noise that are not present at the time of the scan. You can see how the noise in a

particular channel is changing over time by simply repeating it in the scan list. For

example,

Link Status Log Utility

1650 -102.923950 -97.472015 -94.953606 -83.101387 24

1670 -96.610970 -91.465370 -86.563614 -84.484718 29

1690 -95.679008 -89.701218 -86.749275 -79.336105 24

2220 -103.718758 -97.790871 -93.297089 -88.014229 26

2250 -108.324417 -102.998260 -100.864838 -97.243042 25

2280 -104.529037 -98.920143 -94.081635 -91.797234 27

2412 -97.080002 -89.835823 -83.133896 -71.869949 25

2432 -91.229301 -79.683624 -68.121605 -62.148979 17

2452 -99.396301 -96.636200 -86.066101 -71.173927 27

$ cat /tmp/scan_results | awk '{print $3" "$1}' | sort -n -r | awk '{print $2"

"$1}'

FREQ noise-75%

2432 -79.683624

2412 -89.835823

1690 -89.701218

1670 -91.465370

2452 -96.636200

2220 -97.790871

1650 -97.472015

2280 -98.920143

2250 -102.998260

$ cat /etc/scanlist.json

{"scanlist":[

 {"model":"RM-1675-2L-X","bandwidth":"10000","freq":

["1650","1650","1650","1650","1650","1650","1650","1650","1650","1650","1650","16

]}

The Link Status Log utility is designed to log the radio's link status over time. It keeps much

more detailed information that the Central Con�guration utility, but each node operates

separately and does not share information with other nodes. Aside from downloading the

logs, you can also get the latest status from any particular node.

Enabling the Link Status Log in the GUI

The Link Log utility was introduced in the October 2022 �rmware release. Each device

independently maintains a log of the link status information. The Link Log utility can be

con�gured at Services -> Link Status Log . Fig. 2 shows the con�guration page.

Fig. 2 Link Status Log

The logs can be downloaded directly from the GUI. Alternatively, the logs are accessible in

the shell in the folder /tmp/longtermlog .

Viewing the logs

The contents of the Link Log utility are shown here,

The log �les are limited to 500 lines, and the �le name is the date when the log started.

Aside from long term logs, the Link Log utility keeps the latest status line in the �le

/tmp/longtermlog/status.json . The output of each line is,

root@smartradio:/tmp/longtermlog# ls

22-05-05_13-26-21.log 22-05-05_13-51-09.log 22-05-05_14-14-34.log ipv6list

status.json

{

 "date": "22-05-05_13:44:05",

 "ipv6list": [

 {

 "ip6address": "fe80::78c6:240f:42e6:7787",

 "rtt": "1.757"

 }

],

 "stations": [

 {

 "mac": "00:30:1A:50:3B:A0",

 "signal": -54,

 "signal_ant": [

 -59,

 -56

],

 "signal_avg": -54,

 "noise": -95,

 "inactive": 20,

 "connected_time": 1043,

 "thr": 29718,

 "authorized": true,

 "authenticated": true,

 "preamble": "long",

 "wme": true,

 "mfp": true,

 "tdls": false,

 "mesh llid": 0,

 "mesh plid": 0,

 "mesh plink": "ESTAB",

 "mesh local PS": "ACTIVE",

 "mesh peer PS": "ACTIVE",

 "mesh non-peer PS": "ACTIVE",

 "rx": {

 "drop_misc": 55,

 "packets": 69813,

 "bytes": 7679137,

 "ht": true,

 "vht": false,

 "mhz": 10,

 "rate": 19500,

 "mcs": 4,

 "40mhz": false,

 "short_gi": false

 },

 "tx": {

 "failed": 4,

 "retries": 199,

 "packets": 18283,

 "bytes": 3007957,

 "ht": true,

 "vht": false,

 "mhz": 10,

 "rate": 29250,

 "mcs": 6,

 "40mhz": false,

 "short_gi": false

 }

 }

],

 "wirelessStats": {

 "noise": "-93.081978",

The output is in JSON format with the following sections. Some options may not be

enabled by default in the GUI.

Time stamp. This is the time stamp for the information set.

Ipv6 station list. This section shows the Ipv6 address of each connected station, and

the round-trip time to that station.

Stations. This section shows layer 2 connectivity information to all nodes in the

network. It shows the output of the command ubus call iwinfo assoclist

'{"device":"wlan0"}' . Some important �elds include

inactive: time in milliseconds since a packet was received by the wireless interface.

signal: total RSSI of the packets received from that station

signal_ant: RSSI of the packets received from that station in the format "antenna0,

antenna1".

tx.mcs: latest MCS rate for packets sent to that station.

rx.mcs: latest MCS rate for packets received from that station.

Wireless Statistics

noise: level of the background noise in dBm

act_s: active time in seconds since the last time-stamp

 "act_s": 3.02,

 "bus_s": 0.06,

 "RX_kb": 200,

 "TX_kb": 142,

 "usrrst": 25,

 "Fatal": 0,

 "TXPath": 0,

 "bbhang": 0,

 "deafhang": 0,

 "backlog": 0,

 "channel": 12,

 "frequency": 915,

 "bandwidth": 10

 },

 "Batman_info": [

 {

 "hard_ifindex": 10,

 "orig_address": "00:30:1a:50:3b:a0",

 "best": true,

 "last_seen_msecs": 60,

 "neigh_address": "00:30:1a:50:3b:a0",

 "tq": 248

 }

],

 "CPU_info": "2.18 1.74 1.14 4/64 9150",

 "Mem_info": "58748K total, 14464K free, 5240K buff, 12080K cached"

}

bus_s: the amount of time the wireless medium was in use by any station in

seconds. The medium usage duty cycle is bus_s/act_s.

RX_kb: amount of data received in kilobits since the last time-stamp.

TX_kb: amount of data transmitted by this node in kilbits since the last time-

stamp.

The remaining �elds are driver related and should be diagnosed by Doodle Labs

technicians if required.

Batman Info. This section details the mesh routing statistics

hard_i�ndex: ignore this

orig_address: The station that this set of statistics covers. Each station in the mesh

is called an originator.

best: Is this section the next best hop?

last_seen_msecs: Time since the mesh routing layer has seen a packet from this

originator.

neigh_address: The next hop towards this originator.

tq: The Transmit Quality �gure of merit out of 255 which is used to calculate the

next best hop.

CPU_info. CPU load information

Mem_info. Memory usage information.

Creating a Bootup Script

The Mesh Rider Radio uses Openwrt's procd system for init scripts

(https://openwrt.org/docs/guide-developer/procd-init-script-example).

Example

We will create a simple script to echo a message to the system logs every 5 seconds. Save

the following listing as /usr/bin/my_startup_script.sh

You now have to make the script executable. Run

#!/bin/sh

while (sleep 5) do

 logger -t "My Message" "Hello"

done

chmod +x /usr/bin/my_startup_script.sh

https://openwrt.org/docs/guide-developer/procd-init-script-example

You can use the following basic listing for a startup script. Save the �le in your Mesh Rider

Radio as /etc/init.d/my_init_script .

After creating the �le, make it executable, and then enable and start the init script.

You can also follow the system log messages from my_startup_script.sh by running

Appendix A: Central Con�g (Legacy)

The Central Con�guration utility is designed to quickly modify the operating channel, TX

power, and distance setting, and to poll status information from the entire network of

radios. After enabling Central Con�g in the GUI, it is possible to perform Central Con�g

tasks over the SSH and JSON-RPC APIs. See the Remote Management Guide for details. As

each radio uses the Central Con�g utility to send its own link information to the primary

node, the central con�guration utility is a good way to get limited network-wide status

information.

Enabling Central Con�g in the GUI

If you have gained some familiarity with ubus, you can run Central Con�g commands over

ubus. You can use Central Con�g to either send con�guration changes to the entire

network or get status information from each node in the network. You will need to enable

Central Con�g in the GUI �rst. Navigate to Services -> Central Config in the GUI to

enable the service. Fig. 1 shows the Central Con�g con�guration page. Note that one node

should be elected as the primary node, and all other nodes need to put the primary

node's IP address in the Address bar. The Central Con�g utility uses TLS PSK for security,

and it can be con�gured in the second tab.

#!/bin/sh /etc/rc.common

USE_PROCD=1

START=99

PROG="/usr/bin/my_startup_script.sh"

start_service() {

 procd_open_instance

 procd_set_param command $PROG -p $PORT

 procd_set_param respawn 0 5 0

 procd_close_instance

}

chmod +x /etc/init.d/my_init_script

/etc/init.d/my_init_script enable

/etc/init.d/my_init_script start

logread -f "My Message"

Fig. 1 Central Con�g con�guration page

Sending a con�guration change request

Currently only three parameters are implemented over Central Con�g: the operating

channel, the distance setting (in meters), and the TX power level (in dBm). Additional

options may be added in future. These settings are controlled by the ubus Central Con�g

properties "channel" , "distance" , and "txpower" . For example, to change the operating

channel, run

This tells all devices in the network to switch to channel 51. If you run "iw wlan0 info"

after running the above command, you should see that the radios have moved to the new

channel (make sure it is a valid channel �rst).

The "delay" property can be used to delay the execution of the call (in seconds).

The property "dest" can be either "all" , "primary" , or a speci�c MAC address.

The property "config" is actually a generic property in JSON format. When a node

receives a new message, it executes all scripts in the folder

/usr/lib/doodlelabs/central-config . It is up to those scripts to parse the json data

and perform actions based on the received data.

Getting a status update

To get a status update over Central Con�g, run the command

root@smartradio:~ # ubus call central-config config

'{"dest":"all","delay":0,"config":{"channel":"51"}}'

root@smartradio:~ # ubus call central-config config

'{"dest":"all","delay":0,"apply":"true","config":{"request_status":"1"}}'

You will not see an output, but each radio de�ned by "dest" will send a status update

which will be appended to /tmp/status.json . This �le grows each time a new status

update is received. We can once again use the jsonfilter utility to parse the

/tmp/status.json �le. For example, to get a list of MAC addresses, run

-i : �le input

-a : because the �le is a stack of several JSON strings, this switch treats the �le as an

array

-e : �lter pattern

sort -u : remove duplicates

To get the latest status update from a particular MAC address, run

root@smartradio:~# jsonfilter -i /tmp/status.json -a -e '@[*].mac' | sort -u

00:30:1A:4E:AA:01

00:30:1A:4E:AA:02

00:30:1A:4E:AA:09

root@smartradio:~# jsonfilter -i /tmp/status.json -a -e

'@[@.mac="00:30:1A:4E:AA:01"]' | tail -n1

{

 "mac": "00:30:1A:4E:AA:01",

 "hostname": "smartradio-301a4ebb01",

 "model": "RM-2250-2J-X",

 "Interfaces": [

 {

 "wlan0": {

 "mac": "00:30:1A:4E:BB:01",

 "associations": [

 {

 "mac": "00:30:1A:4E:BB:09",

 "signal": -52,

 "inactive": 0,

 "tx_mcs": 65000,

 "rx_mcs": 58500,

 "tx_packets": 368820,

 "rx_packets": 1069144

 },

 {

 "mac": "00:30:1A:4E:BB:02",

 "signal": -59,

 "inactive": 0,

 "tx_mcs": 65000,

 "rx_mcs": 58500,

 "tx_packets": 368938,

 "rx_packets": 1063279

 }

],

 "Batman_originator": [

 {

 "best": "true",

 "orig_address": "00:30:1a:4e:bb:02",

@[] : print only the array element de�ned in the square braces

@.mac="00:30:1A:4E:AA:01" : �lter the array element with this matching MAC address

When �rst using this API, we recommend copying the �le to your local machine, and

parsing the data using jq (https://stedolan.github.io/jq/), which will make the output

human readable. If we want to get an array of MAC addresses, and corresponding RSSI, we

need to run the command

We could also run this command twice, once to get the MAC addresses, and the second

time to get the RSSI. However, in most cases, it makes more sense to parse the json �le on

your local machine rather than in the Mesh Rider Radio.

 "last_seen_msecs": 90,

 "tq": 239

 },

 {

 "best": "true",

 "orig_address": "00:30:1a:4e:bb:09",

 "last_seen_msecs": 60,

 "tq": 246

 }

]

 }

 }

],

 "phy0": {

 "aqm_backlog": 0

 }

}

root@smartradio:~# jsonfilter -i /tmp/status.json -a -e

'@[@.mac="00:30:1A:4E:AA:01"]' | tail -n1 | jsonfilter -e

'@.Interfaces[0].wlan0.associations.results[*].signal' -e

'@.Interfaces[0].wlan0.associations.results[*].mac'

-63

-54

00:30:1A:4E:BB:02

00:30:1A:4E:BB:09

https://stedolan.github.io/jq/

