
Production Firmware Customization

Overview

You may wish to change the default con�guration or look and feel of the Mesh Rider Radio

for you end application before the radio is shipped to then end customer. We recommend

either

1. running commands remotely over the Mesh Rider Radio's API. Have a look at our

Remote Management Guide for details.

2. having the radio set itself up on factory reset through scripts saved in the radio.

3. using Image Builder to build a custom image

In general, you need to become familiar with the CLI Guide. Our customers will often lock

general access to the radio (e.g. SSH or HTTPs) from your end user and only allow radio

access through their own software. Their software would have access to the radio over it's

API.

Running scripts in the radio

If you are using scripts running inside of the radio, one issue is that the scripts will be

wiped if the radio is factory reset. Therefore, we recommend saving your scripts in the

/opt/ directory which is not wiped on a factory reset.

After a factory reset, the radio will run the script /opt/factoryreset.sh . Therefore, if you

want your changes to survive a factory reset, you can modify the /opt/factoryreset.sh

�le and add your script calls before the exit 0 line. Your scripts will also need to be saved

in the /opt/ directory.

You can issue a factory reset from the command prompt using the command firstboot -

y && reboot .

Example - Changing the default SSID and Password

As an example, suppose you want to change the default SSID and Password on the radio

so that it holds over a factory reset or �rmware upgrade. First modify the �le

/opt/factoryreset.sh so that it looks like this

#!/bin/sh

/opt/default-settings.sh &

file:///C:/Users/User/Documents/DL-Techlib/site/sw-guides/remote-config-guide/
file:///C:/Users/User/Documents/DL-Techlib/site/sw-guides/cli/

Next create the �le /opt/default-settings.sh with the following content.

We added some code which makes sure that the wireless interface is up before any

changes are made. It's a good idea to add this to any script. As an additional failsafe, you

could temporarily add some code so that this script is only run on the �rst factory reset

and not on subsequent factory resets. This is useful for development in case your factory

reset script has problems and bricks the radio. For example, we could modify the

/opt/factoryreset.sh �le like this

The �rst time the radio is factory reset, the �le /opt/RunOnlyOnce will be created, and the

/opt/default-settings.sh script will be run. The second time it is factory reset, the �le

/opt/default-settings.sh will not be run, and a true factory reset will happen.

Example - Copying a full con�guration

It is possible to copy the con�guration of one radio to another radio using our

configclone.sh utility, which is described here.

First modify the /opt/factoryreset.sh �le like this

exit 0

#!/bin/sh

This line is added so that the wireless interface is fully up before any

changes are made

while [-z "$(ifconfig bat0 2> /dev/null)"]; do

 sleep 5

done

These are the configuration changes

uci set wireless.wifi0.mesh_id='MyPreferredSSID'

uci set wireless.wifi0.key='MyPreferredPassword'

uci commit

This restarts the wireless interface

wifi

#!/bin/sh

check if the file /opt/RunOnlyOnce exists, and if it does, then exit

[-f "/opt/RunOnlyOnce"] && exit 0

touch /opt/RunOnlyOnce

/opt/default-settings.sh &

exit 0

file:///C:/Users/User/Documents/DL-Techlib/site/troubleshooting/backup-upgrade/#configuration-copy

Next create the /opt/default-settings.sh �le with the following content

Next create a con�guration backup using the configclone.sh utility. Copy the

backup.tar.gz �le to your local PC in case you need it later, and copy the backup.tar.gz

�le to /opt/backup.tar.gz . At this point, you can try and factory reset the radio. It should

revert to the same settings. You can copy the �les

to any radio of the same model, and it should work. In some cases, you may need to

resolve some con�icts during the con�g clone process.

Building custom software and Images

In order to build customer software or �rmware images for your radio, you will need to

gain access to our SDK and Image Builder. This can be obtained with an NDA through one

of our Sales representatives.

The SDK can be used to build customer user-space software. It cannot be used to

build kernel modules or full images.

Image Builder is used to compile a �rmware image. Custom software packages and

default settings can be added.

#!/bin/sh

/opt/default-settings.sh &

exit 0`

#!/bin/sh

/opt/default-settings.sh &

exit 0

root@smartradio-301a402973:/opt# ^C

root@smartradio-301a402973:/opt# cat default-settings.sh

#!/bin/sh

while [-z "$(ifconfig bat0 2> /dev/null)"]; do

 sleep 5

done

cp /opt/backup.tar.gz /tmp/

configclone.sh -r -k

/opt/factoryreset.sh

/opt/default-settings.sh

/opt/backup.tar.gz

Using the SDK

The Doodle Labs SDK allows you to build additional OpenWrt packages suitable for a

subsequent installation to Doodle Labs device via opkg. These can be packages in feeds or

your own packages. To use the Doodle Labs SDK, �rst download and unpack the doodle-

labs-sdk-*-Linux-x86_64.tar.xz �le on a 64-bit x86 Linux PC. Adjust feeds.conf and/or

feeds.conf.default as desired. More information is available here [1, 2, 3].

For external packages and external kernel module founds in feeds, follow below steps.

1. Install packages/libraries required for compilation

2. Update feeds

Edit feeds.conf.default and insert this into the �le

Save �le and execute the command

3. You can list all available packages in feeds via

4. Select Packages

In the main menu, enter Global Build Settings and in the submenu, deselect/exclude

the following options by pressing space bar

Still in the menu, �nd the package you want to build and select it by pressing m , this

will also select all the dependencies, and you will see that they are all tagged with <M>

in the menu. You can select multiple packages too.

5. Save the con�guration and exit the menu.

$ sudo apt update; sudo apt install -y build-essential libncurses5-dev

libncursesw5-dev zlib1g-dev gawk git gettext libssl-dev xsltproc rsync wget

unzip python

src-git base https://github.com/openwrt/openwrt;v19.07.7

$./scripts/feeds update -a; ./scripts/feeds install -a

$./scripts/feeds list

$ make menuconfig

Select all target specific packages by default

Select all kernel module packages by default

Select all userspace packages by default

https://openwrt.org/packages/start
https://openwrt.org/docs/guide-developer/packages
https://openwrt.org/docs/guide-developer/using_the_sdk

6. You can then install and build a package as follows (Suppose ethtool is chosen in step

3, for example)

7. The �nal IPK package can then be found in

8. The .ipk can then be copied to the Doodle lab device and install via opkg.

Building Firmware Images

The Doodle Labs Image Builder helps in creating a ready-to-�ash �rmware image with a

custom set of packages for Doodle Labs Device. It is based o� of OpenWrt's Image Builder.

To use the Doodle Labs ImageBuilder, �rst download and unpack the doodle-labs-

imagebuilder-*-Linux-x86_64.tar.xz �le on a 64-bit x86 Linux PC. These instructions

were executed on a PC running Ubuntu 20.04.3 LTS.

1. Install necessary packages/libraries required for compilation

2. Copy any custom OpenWrt IPK �les to the ./packages directory. You can also see

which packages have been precompiled by listing the contents of this directory

3. You may also add any custom �les which should be added to the image in a directory

such as files . For example,

Tip: A common requirement is to have the radio start with a custom con�guration.

This can be done by adding custom scripts to /etc/uci-defaults . More information is

available here. Make sure your script is executed last by giving it a name starting with

99- . For example, create the �le

$ make package/ethtool/compile

./bin/packages/mips_24kc/base/ethtool_5.2-1_mips_24kc.ipk

$ scp ethtool_5.2-1_mips_24kc.ipk root@smartradio:/tmp/

root@smartradio:/# opkg install /tmp/your-package.ipk

$ sudo apt update; sudo apt install -y build-essential libncurses5-dev

libncursesw5-dev zlib1g-dev gawk git gettext libssl-dev xsltproc rsync wget

unzip python

$ ls packages

$ mkdir -p files/root

$ echo "Hello" > files/root/README

https://openwrt.org/docs/guide-user/additional-software/imagebuilder
https://openwrt.org/docs/guide-developer/uci-defaults

inside of your working directory.

4. Get a list of installed packages from a running Mesh Rider radio. SSH into the radio

and run

Now copy this �le to your Image Builder working directory

5. You can now build a �rmware image using

Note that it is necessary to instruct Image Builder not to package wpad-basic . If you

have additional packages you wish to add, use

Replace <your package name> with the name of your package (it must be in the

./packages folder).

6. The new �rmware will be at bin/targets/ar71xx/generic/doodle-labs-19.07.7-

ar71xx-generic-smartradio-squashfs-sysupgrade.bin . You can now �ash this

�rmware to your router using the instructions here.

Appendix A - Creating a Hello World program

1. Suppose the SDK directory is /home/test/sdk-xxx

2. Edit helloworld.c as

./files/etc/uci-defaults/99-myStartupScript

root@smartradio:/# echo $(opkg list_installed | awk '{ print $1 }') >

/tmp/default-packages

$ scp root@<IP address of Mesh Rider radio>:/tmp/default-packages ./

$ make image PROFILE=smartradio FILES=files PACKAGES="$(cat default-

packages) -wpad-basic"

$ make image PROFILE=smartradio FILES=files PACKAGES="$(cat default-

packages) -wpad-basic <your package name>"

$ cd /home/test/sdk-xxx

$ mkdir helloworld

$ cd helloworld

$ touch helloworld.c

#include <stdio.h>

int main(void)

{

 printf("\nHello, world!\nFrom Doodle Labs.\n\n");

file:///C:/Users/User/Documents/DL-Techlib/site/troubleshooting/backup-upgrade/

3. Build and test the program

4. Prepare package feeds

5. Edit ./mypackages/examples/helloworld/Makefile using the listing below as a

reference (take note that the big indent below is tab (not 8 spaces), also change

SOURCE_DIR to your actual helloworld.c source code directory)

 return 0;

}

$ gcc -c -o helloworld.o helloworld.c -Wall

$ gcc -o helloworld helloworld.o

$./helloworld

$ cd /home/test/sdk-xxx

$ mkdir -p mypackages/examples/helloworld

$ touch ./mypackages/examples/helloworld/Makefile

include $(TOPDIR)/rules.mk

Name, version and release number

The name and version of your package are used to define the variable to

point to the build directory of your package: $(PKG_BUILD_DIR)

PKG_NAME:=helloworld

PKG_VERSION:=1.0

PKG_RELEASE:=1

Source settings (i.e. where to find the source codes)

This is a custom variable, used below

SOURCE_DIR:= /home/test/sdk-xxx/helloworld

include $(INCLUDE_DIR)/package.mk

Package definition; instructs on how and where our package will appear in

the overall configuration menu ('make menuconfig')

define Package/helloworld

SECTION:=examples

CATEGORY:=Examples

TITLE:=Hello, World!

endef

Package description; a more verbose description on what our package does

define Package/helloworld/description

A simple "Hello, world!" -application.

endef

Package preparation instructions; create the build directory and copy the

source code.

The last command is necessary to ensure our preparation instructions

remain compatible with the patching system.

define Build/Prepare

 mkdir -p $(PKG_BUILD_DIR)

 cp $(SOURCE_DIR)/* $(PKG_BUILD_DIR)

 $(Build/Patch)

6. Update and install feed for the package. Add the following at the end of the

/home/test/sdk-xxx/feeds.conf.default . Change /home/test/sdk-xxx to your actual

SDK directory.

7. Update feeds and install your package

8. Select helloworld packages

In the main menu, enter Global Build Settings and in the submenu, deselect/exclude

the following options by pressing space bar

Still in the menu, choose the helloworld package under Examples menu by pressing

m . Save the con�guration and exit the menu.

9. Compile your package

endef

Package build instructions; invoke the target-specific compiler to first

compile the source file, and then to link the file into the final

executable

define Build/Compile

 $(TARGET_CC) $(TARGET_CFLAGS) -o $(PKG_BUILD_DIR)/helloworld.o -c

$(PKG_BUILD_DIR)/helloworld.c

 $(TARGET_CC) $(TARGET_LDFLAGS) -o $(PKG_BUILD_DIR)/$1

$(PKG_BUILD_DIR)/helloworld.o

endef

Package install instructions; create a directory inside the package to

hold our executable, and then copy the executable we built previously into

the folder

define Package/helloworld/install

 $(INSTALL_DIR) $(1)/usr/bin

 $(INSTALL_BIN) $(PKG_BUILD_DIR)/helloworld $(1)/usr/bin

endef

This command is always the last, it uses the definitions and variables we

give above in order to get the job done

$(eval $(call BuildPackage,helloworld))

Own packages

src-link mypackages /home/test/sdk-xxx/mypackages

$ cd /home/test/sdk-xxx

$./scripts/feeds update -a

$./scripts/feeds install -a -p mypackages

$ make menuconfig

Select all target specific packages by default

Select all kernel module packages by default

Select all userspace packages by default

10. You can �nd the helloworld_1.0-1_<arch>.ipk in the

./bin/packages/<arch>/mypackages folder

11. Copy the .ipk to the Smart Radio device and install

12. Test it

$ make package/helloworld/compile

root@smartradio:/# opkg install helloworld_1.0-1_<arch>.ipk

root@smartradio:/# helloworld

Hello, world!

From Doodle Labs.

