
Remote Management Guide for Mesh

Rider Radio

Introduction

The Mesh Rider Radio runs the Mesh Rider OS. It is a customized version of Openwrt with

enhancements useful for applications requiring low-latency command-and-control

transmission and high-throughput video - e.g. UAV and robotics.

The purpose of this guide is to aide a user in remotely con�guring Mesh Rider Radio

settings. There are three primary ways to con�gure the Mesh Rider Radio. All of these

interfaces can be accessed either locally (over Ethernet/USB) or remotely (over the

wireless link).

1. The Web GUI

2. SSH

3. The JSON-RPC API

4. MQTT

Each of these interfaces serves a di�erent purpose. The Web GUI is designed for initial

con�guration. For example, when you �rst start using the device, during bench testing.

SSH access is enabled for advanced system con�guration and status monitoring. It

provides root access to the underlying Linux system and is a very powerful way to access

the system. Typically, equipment manufacturers should not allow SSH access to the end

users of the radios. SSH can be very fast when using multiplexing.

The JSON-RPC API is designed for integration into customer software. As with SSH access,

it potentially provides complete access to the underlying Linux system, however access

permissions can also be tailored to the equipment manufacturer’s requirements so that

end-users cannot access the nuts and bolts of the radios system.

MQTT is an alternative to the JSON-RPC API which is ubiquitous in IoT applications. Only

user-de�ned messages can be sent using MQTT. MQTT can be very fast if encryption is

turned o�.

A summary of the di�erences between the command-line APIs is shown in Table 1.

Table 1: Comparison of Mesh Rider Radio APIs

SSH JSON-RPC MQTT

SSH JSON-RPC MQTT

Network

Model

P2P, Client-server P2P, Client-

server

Centrally Managed

Primary

Usage

Debugging Software

Integration

IoT, simple

messaging

Access Full User-De�ned User-De�ned

Command

Set

All ubus only User-de�ned

messaging

Security Required Required Optional

Latency Fast with multiplexing

(10s of milliseconds)

Fast (10s of

milliseconds)

+ Slow with TLS (~2s)

+ Fast without (10s of

milliseconds)

End users will typically never use any of these APIs directly. In fact, they should not even

have the password to access the radios. Instead, they use application software such as

ground-control-station (GCS) software which uses the JSON-RPC API to talk to the radio

and relay information to the user.

The remainder of the main content of this document discusses how to run commands in

the CLI.

The Web GUI

The Web GUI can be accessed in any web browser at https://<IP ADDRESS> (port 443).

Note that the web browser uses a self-signed certi�cate. This means that connection to

the web browser is encrypted, but not authenticated. The �rst time you access the Mesh

Rider Radio from a new browser, you will get an SSL certi�cate warning. It is okay to ignore

the warning and proceed.

SSH

SSH or Secure Shell is a way to securely login to the Mesh Rider Radio. The easiest way to

do so is to open up a command prompt (Windows) or terminal (Linux), and type

ssh root@<IP ADDRESS>

Where <IP ADDRESS> is the IP address of the Mesh Rider Radio. There are numerous

con�guration options that your SSH client supports, such as public key authentication, and

quiet output and you are encouraged to research them.

Note that your SSH client keeps a list of known hosts, and after a �rmware upgrade, you

may need to remove the Mesh Rider Radio from the known hosts list. You can do so by

running

Sending Remote Commands

You can remotely execute a command via SSH to obtain network information from the

node. For example,

Speeding up the Connection

If your SSH client supports Multiplexing (OpenSSH for example), then it is a good way to

improve the connection speed. Multiplexing allows you to send multiple commands over a

single SSH connection. Information about the setup can be found here:

https://en.wikibooks.org/wiki/OpenSSH/Cookbook/Multiplexing

As an example, modify your SSH con�g �le (usually ~/.ssh/config) with the following

settings

Create the �le if it doesn't exist.

The JSON-RPC API

ssh-keygen -R <IP ADDRESS>

ssh root@<IP ADDRESS> "iw wlan0 info"

Interface wlan0

 ifindex 13

 wdev 0x7

 addr 00:30:1a:4e:86:46

 type mesh point

 wiphy 0

 channel 12 (915 MHz), width: 20 MHz, center1: 915 MHz

 txpower 32.00 dBm

Host *

 IdentitiesOnly yes

 ControlPersist yes

 COntrolMaster auto

 ControlPath ~/.ssh/%r@%h:%p

https://en.wikibooks.org/wiki/OpenSSH/Cookbook/Multiplexing

The JSON-RPC API is normally preferred when integrating radio access into custom

software. In order to enable the JSON-RPC API, navigate to

in your web browser. Fig. 1 shows the JSON-RPC API web con�guration page.

Fig. 1 JSON RPC API Con�guration Page

Click Add to con�gure the API. Choosing Restricted Access opens up the API for a limited

set of commands which we will detail later. You can also choose Full Access which allows

unrestricted access to the Linux �lesystem, and Custom Access, if you know how to

customize the JSON RPC API. We recommend choosing Restricted Access if you are not

sure.

The default username and password for the JSON-RPC API is root , DoodleSmartRadio .

Restricting Access

Only UBUS commands can be executed over the JSON-RPC API. The commands which can

be executed over the JSON-RPC API are con�gured in the �le

/usr/share/rpcd/acl.d/root.json . We suggest that you read the �le to gain an

understanding of how to control user access. A listing is shown below with Restricted

Access applied.

https://<IP ADDRESS>/cgi-bin/luci/admin/services/rpcd

root@smartradio:~# cat /usr/share/rpcd/acl.d/root.json

{

 "root": {

 "description": "user access role",

 "read": {

 "ubus": {

 "file": ["exec", "read", "stat"],

 "iwinfo": ["info"],

Using the JSON-RPC API

To use API, you need to get a session ID and use it for subsequent requests. For example,

you can try the following call,

 "system": ["reboot", "info"],

 "dhcp": ["*"],

 "central-config" : ["*"],

 "uci": ["*"]

 },

 "uci": ["wireless", "network"],

 "file": {

 "/usr/bin/free": ["exec"],

 "/usr/bin/top -n1": ["exec"],

 "/bin/dmesg": ["exec"],

 "/sbin/logread": ["exec"],

 "/usr/sbin/alfred *": ["exec"],

 "/usr/sbin/batadv-vis *": ["exec"],

 "/usr/sbin/batctl *": ["exec"],

 "/usr/sbin/iw *": ["exec"],

 "/etc/init.d/* start": ["exec"],

 "/etc/init.d/* stop": ["exec"],

 "/etc/init.d/* restart": ["exec"],

 "/usr/bin/link-status.sh *": ["exec"],

 "/tmp/run/pancake.txt": ["read"],

 "/var/run/gps/*": ["read"],

 "/tmp/status.json": ["read"],

 "/tmp/longtermlog/status.json": ["read"]

 }

 },

 "write": {

 "ubus": {

 "central-config" : ["*"],

 "uci": ["*"]

 },

 "uci": ["wireless", "network"],

 "file":{

 "uci *": ["exec"]

 }

 }

 }

}

USER=myusername

PASS=mypassword

curl -k https://<IP-ADDRESS>/ubus -d '

{

 "jsonrpc": "2.0",

 "id": 1,

 "method": "call",

 "params": ["00000000000000000000000000000000", "session", "login", {

"username": '\"$USER\"', "password": '\"$PASS\"' }]

}'

the -k option is required because the Mesh Rider Radio doesn’t use a third party

certi�cate authority. An example of using JSON-RPC API for �le access is shown below.

Substitute <TOKEN> with the value returned above.

We recommend parsing data on your local machine rather than trying to parse it on the

Mesh Rider Radio.

Using the JSON-RPC API requires knowledge of UBUS. Please read the section Running

Commands in the CLI for more information.

Speeding up the connection

In the commands above, we ran the curl utility directly from the command prompt. The

speed is limited when doing this because each curl command establishes a new session

and closes it once the command is complete. A faster way to poll data is to open a session,

send all of your commands, and the close the session when you are done. The listing

below shows how this could be done using python3 .

TOKEN=$1

curl -k https://<IP-ADDRESS>/ubus -d '

{

 "jsonrpc": "2.0",

 "id": 1,

 "method": "call",

 "params": ['\"$TOKEN\"', "file", "read", { "path": "/tmp/status.json" }]

}'

#!/usr/bin/python3

import requests

import json

IPADDR = "10.223.59.152"

USER = "root"

PW = "DoodleSmartRadio"

url = 'https://{}/ubus'.format(IPADDR)

Create a session

session = requests.Session()

JSON payload for login request

login_payload = {

 "jsonrpc": "2.0",

 "id": 1,

 "method": "call",

 "params": ["00000000000000000000000000000000", "session", "login",

{"username": USER, "password": PW}]

}

Send the login POST request

response = session.post(url, json=login_payload, verify=False)

file:///C:/Users/User/Documents/DL-Techlib/site/sw-guides/cli/#ubus

MQTT

The Mesh Rider Radio has supported MQTT broker and client protocols since the February

2022 �rmware release. MQTT uses a publish/subscribe model. Clients can publish

messages to a topic, and all clients which are subscribed to that topic will receive the

message. All communications are handled by a central broker.

Parse the JSON response

data = json.loads(response.text)

Extract the desired value (token)

token = data['result'][1]['ubus_rpc_session']

Print the token

print("Token:", token)

JSON payload for distance request

time_payload = {

 "jsonrpc": "2.0",

 "id": 1,

 "method": "call",

 "params": [token, "file", "exec", { "command": "cat", "params": [

"/proc/uptime"] }]

}

Send the distance POST request

response = session.post(url, json=time_payload, verify=False)

Parse the JSON response

data = json.loads(response.text)

Extract the desired value (distance)

radioTime = data['result'][1]['stdout']

Print the distance

print("Radio Time:", radioTime)

Repeat to show the speed

response = session.post(url, json=time_payload, verify=False)

data = json.loads(response.text)

radioTime = data['result'][1]['stdout']

print("Radio Time:", radioTime)

Repeat again to show the speed

response = session.post(url, json=time_payload, verify=False)

data = json.loads(response.text)

radioTime = data['result'][1]['stdout']

print("Radio Time:", radioTime)

Close the session

session.close()

Fig. 2 MQTT publish/subscribe model

The Mesh Rider Radio uses MQTT for it's Central Con�g utility, so the easiest way to start a

broker is to simply set one of the radios as the primary node in the Central Con�g

con�guration page. Navigate to Services -> Central Config in the GUI and use the setup

below.

Fig. 3 Central Con�g setup

This radio will now run an MQTT broker. You can modify the security settings on the

broker in the security tab. You can check that the broker is running by logging into the

radio over SSH and running the following command

You can test out the following pub/sub commands from the Mesh Rider Radio itself.

Subscribe to the topic "mytopic"

Publish a message to the topic "mytopic"

ssh root@<host IP>

ps w | grep mosquitto | grep -v grep

mosquitto_sub -h <BROKER IP> -p 8883 -t "mytopic" --psk "0123456789abcdef" --

psk-identity "doodlelabs"

mosquitto_pub -h <BROKER IP> -p 8883 -t "mytopic" --psk "0123456789abcdef" --

psk-identity "doodlelabs" -m 'Hello'

For details on common CLI commands, or if you want to create program that starts

automatically on boot, see our command-line guide.

Speeding up MQTT

The speed at which MQTT can send commands is limited by the TLS handshaking required

for every message sent. You can also run an MQTT broker without TLS security by simply

running

over the CLI. You can also create a start-up script to do this automatically on boot. The

insecure MQTT broker listens on port 1883, so you will need to open the �rewall on port

1883 for the broker to receive messages. With TLS disabled, the mosquitto_pub/sub

commands are the same except the --psk and --psk-identity arguments are not

required.

As with SSH and the JSON-RPC API, you can also explore di�erent MQTT library

implementations for ways to send multiple commands in a single session.

mosquitto

file:///C:/Users/User/Documents/DL-Techlib/site/sw-guides/cli/
file:///C:/Users/User/Documents/DL-Techlib/site/sw-guides/cli/#creating-a-bootup-script

